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Electrostatic interactions derived from floating basis HF/D95** ab initio calculations are presented for a
tetrahedral water pentamer. Since floating basis ab initio calculations approximately satisfy the Hellmann-
Feynman theorem, indicating that the forces on the nuclei can be calculated classically; and, since the wave
function of the pentamer includes all polarization and mutual polarization effects, the intermolecular interactions
can be calculated classically by using molecular properties extracted from the wave function of the aggregate.
We compare classical interactions based upon floating basis functions, as well as analogous interactions based
upon normal (nonfloating) Hartree-Fock calculations with supermolecular interaction energies and pairwise
interactions. We also compare classical electrostatic calculations based upon interacting point charges with
those based upon interactions of charges one molecule with the electric field of the others. We show that the
latter method (which is free of penetration effects) coupled with the floating basis wave functions gives the
supermolecular energy to 0.2 kcal/mol. The electrostatic interactions derived from the “normal” wave functions
are significantly too strong. Point charge interactions for the “normal” wave functions are closer to the
supermolecular interaction due to fortuitous approximate cancelation of the effects of penetration and the
overestimation of the electrostatic interaction. We also show that the dipole moments of the possible dimers
cannot be derived additively from the monomers, nor those of the pentamer from those of either the monomers
or the dimers.

The Hellmann-Feynman theorem states that the forces on
the nuclei can be calculated classically from the exact wave
function.1 Extension of this principle indicates that intermo-
lecular interactions can be obtained classically from the exact
wave functions of the monomeric units of an aggregate. The
classical interactions will be entirely electrostatic2 if the wave
functions of the monomeric units reflect their electronic and
nuclear distortions upon transformation from free monomers
to the aggregate. Thus, electrostatic calculations based upon
the exact wave function for theaggregateshould correctly define
the aggregation energy. Such calculations should be entirely
pairwise additive. Most classical treatments are based upon
properties derived from the monomeric unit. These are not
properly pairwise additive as they do not account for polarization
and mutual polarizations which are three-body and many-body
effects, respectively.3 However, molecular properties derived
from the wave function of the aggregate will already include
the effects of both kinds of polarization.
Unfortunately, most available approximate wave functions

are not accurate enough for the Hellmann-Feynman theorem
to be practically useful. However, several groups4 have shown
that floating bases provide calculations that satisfy this theorem
reasonably well. Floating basis calculations allow the foci of
the various shells of atomic basis functions to be different from
the nucleus with which they are usually associated.
In this paper, we employ wave functions that reasonably

satisfy the Hellmann-Feynman theorem to calculate a pentamer
of water molecules. We accomplish this by using floating bases
at the Hartree-Fock level.5 In addition, we investigate the
relaxation due to polarization in the aggregate and the various
possible pairs. From the many water cluster calculations in the
literature, we have chosen the tetrahedral pentamer considered
by Hermansson6 for ready comparison with then-body interac-
tions previously reported.

Methods

Using the Gaussian 92 program,7 we performed ab initio
calculations at the Hartree-Fock level using the D95** basis
set. The “massage” and “bq” options allow one to obtain bare
nuclei and shells of basis functions focused on a “nucleus” of
zero charge. In some cases we constrained the entire atomic
basis of an atom to float together, in others we allowed each
spherically symmetrical shell8 to individually float.
We performed three classes of calculations:
(A) Normal single-point Hartree-Fock (HF) calculations,

without floating bases, designated no-float (NF).
(B) The water pentamer nuclei were frozen in the geometry

previously reported. However, the bases could freely move.
In this type of calculation, each monomeric water is polarized
differently, except for W4 and W5, which are the same by
symmetry. Three different levels of freedom were considered:
(1) all basis functions move together, designated 1-center (1C);
(2) all basis functions corresponding to the same valence orbital
move together, designated valence-shell (VS); (3) each spheri-
cally symmetrical shell moves independently, designated all

† Fundacio´n Banco Bilbao Vizcaya Visiting Professor at the Universitat
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floating (AF). For1C, one point per atom must be optimized
(the nuclei are fixed); forVS two centers per hydrogen (s, p)
and three per oxygen (s, p, d) must be optimized; while for
AF, three centers per hydrogen (s-inner, s-outer, 2p) and seven
per oxygen (1s-inner, 1s-outer, 2s-inner, 2s-outer, 2p-inner, 2p-
outer, 3d). Thus the three different approaches require consid-
eration of 30, 50, and 80 centers, respectively (including the
15 nuclei which are not optimized in this work).
(C) All possible pairs of monomers are calculated (i.e., 1-2,

1-3, 1-4, and 1-5 interactions) using floating bases fixed in
the positions of the pentamer. In these calculations the
polarizations will be different for the monomers in each pair.
In all three sets of calculations (A, B, and C, above), we

corrected for basis set superposition error (BSSE) using the
counterpoise correction9,10 (CP). In order not to bias the
correction, all CPs were calculated with ghosts for the full
pentamer.
Electrostatic calculations were performed in two different

ways. In the first (PC), we approximated the electronic density
of each shell as a point charge at its focus and the nuclei as
point charges at their positions. The electronic charges were
considered to have the values of the Mulliken populations for
each orbital shell.
In the second method (qV), we calculate the energy of each

molecule in the electric field generated by the others. To do
this, we used the pentamer with appropriately optimized foci
(NF, 1C, VS, orAF), with the nuclei removed for the molecule
in question (the bases for this molecule remain as “ghost”
orbitals as in a counterpoise calculation). The electric field was
calculated at each point that represented a nuclear position or
the focus of a basis shell for the missing molecule. The missing
molecule is calculated using the same level of floating bases.
The sum of interactions of the field at each defined point with
the nuclear charge or Mulliken populations at the corresponding
point give the interaction energy between the field generated
by the four remaining members of the aggregate with the
molecule that has been removed. Summing over the interactions
of each molecule with the field of the other four gives twice
the supermolecular interaction energy. The Mulliken popula-
tions of the individual “missing” molecules are calculated
without ghost orbitals to ensure that the full electron density
on the molecule is taken into account.

Results and Discussion

We took the pentamer geometry ref 6 (Figure 1). All five
waters have equivalent internal geometries with O-H distances
of 0.957 Å and H-O-H angles of 104.4°. The O‚‚‚O distances

are all 2.90 Å, while the angle between the H-bonds of waters
2 and 3 is 109.5°. All the H-bonds were constrained to be linear.
Table 1 provides the data for the interaction energy calculated
in several different ways. The supermolecular energy is
calculated by taking the energy of the pentamer and subtracting
the energy of each of the five monomers with its orbital positions
frozen as in the pentamer. Each monomeric energy is slightly
different due to the differing positions of the floating functions
and the different orientations of the ghost orbitals with each
(except for waters 4 and 5, which are equivalent by symmetry).
These energies do not include the geometric or electronic
distortion energies from the completely optimized isolated
monomer. As each water is geometrically fixed in this study,
there is no geometric distortion energy. However, the basis
functions are in different positions for the optimized monomers
from those for the optimized pentamer. The difference between
the sum of the energies of the monomeric waters frozen as in
the pentamer and five times the monomer with optimized orbital
positions is 0.50 kcal/mol for theAF calculations.
Pairwise (2-body) interactions are calculated for each possible

pair with ghost orbitals on the other three molecules. The
floating functions were fixed at their positions in the pentamer.
Classical interactions were performed in the two ways previously
indicated: interaction of the point charges (PC) and interaction
of the charges of each molecule with the electric field generated
by the other four (qV).
For the supermolecular calculations, the totalNF interaction

energies as well as the sum of the 2-bodyNF interactions agree
very well with those reported by Hermansson, despite the
differences in basis sets. The total interaction energies decrease
when the orbitals are allowed to float. The greatest difference
is for theAF calculation. This observation reflects the fact that

Figure 1. Geometry and Cartesian axes for the water pentamer. The
numbers on the oxygens identify the specific monomers.

TABLE 1: Interaction Energies (kcal/mol) for Water
Pentamer Calculated Using Different Methodsa

two-body qV PC supermolecule

NF
W1 -13.77 -21.07 -15.56
W2 -3.55 -5.69 -4.82
W3 -5.39 -7.36 -6.61
W4 -3.64 -4.25 -3.39
W5 -3.64 -4.25 -3.39
total/2 -14.99 -21.31 -16.88 -16.00

1C
W1 -13.80 -21.55 -16.34
W2 -3.56 -5.90 -4.34
W3 -5.40 -7.57 -6.14
W4 -3.64 -4.31 -3.58
W5 -3.65 -4.30 -3.58
total/2 -15.03 -21.82 -16.99 -16.04

VS
W1 -13.76 -20.98 -15.29
W2 -3.00 -5.70 -4.06
W3 -4.85 -7.26 -5.69
W4 -4.19 -4.13 -3.34
W5 -4.19 -4.13 -3.34
total/2 -14.99 -21.10 -15.86 -15.99

AF
W1 -12.36 -15.72 -6.06
W2 -3.11 -2.31 -0.95
W3 -4.50 -3.70 -2.42
W4 -3.40 -3.73 -1.45
W5 -3.40 -3.72 -1.45
total/2 -13.39 -14.59 -6.16 -14.42
aThe value for each water (W1-5) represents the sum of its

interactions with the others. The supermolecular value represents the
supermolecule less the sum of the 5 waters corrected for BSSE. See
text for description of methods used.
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allowing the orbitals to float lowers the energies of the individual
water molecules more than that of the pentamer. Interestingly,
the sum of the two-body interactions remains about 1 kcal/mol
less than the supermolecular interaction energy for each level
of float. Thus, the effects of polarization (including mutual
polarization) are similar for the floating and nonfloating bases
when they are in fixed positions.
The PC calculations are instructive. For both theNF and

1C cases, they predict an interaction that is stronger than the
supermolecular interaction. As the freedom to float is increased,
thePCmethod predicts progressively weaker interactions. At
theVS level, thePC interaction energy matches the supermo-
lecular energy very well. However, at theAF level, the
interaction is predicted to be about 8 kcal/mol too weak by this
method.
The qV method gives results that are somewhat different.

For theNF, 1C, andVS methods, the interactions are much
(about 6 kcal/mol) stronger than the supermolecule prediction.
However, usingqV with theAF method gives a value within
0.2 kcal/mol of the supermolecular interaction energy.
The reasons for these discrepancies have roots in three

approximations that are necessary to calculate the classical
interactions between the molecules: (a) the definition of each
individual molecule within the pentamer; (b) the manner in
which the electron densities of the molecules/aggregate are
defined; (c) the manner in which the interaction of the electron
densities of the molecules/aggregates interact with the nuclei
and each other is calculated. Let us consider each in turn.
Just as the definition of an atom in a molecule poses certain

problems, so does the definition of a molecule in a supermo-
lecular aggregate. In particular, one must decide which electron
density belongs to which atom. While there have been
numerous definitions suggested in the literature, there is clearly
no “correct” manner to do this, as the Schro¨dinger equation for
a molecule (or supermolecule) does not distinguish which
electrons belong to which atoms. We have used the Mulliken
populations to define the point charges. This is, perhaps, the
simplest approach, but probably not the best. Nevertheless, it
illustrates the point. Since the charge density of one molecule
will necessarily overlap that of the others, the interaction
energies calculated using thePCmethod should underestimate
the strength of real electrostatic interactions. The fact that these
interaction are sometimes stronger than those calculated by the
supermolecular method (forNF and1C) only underscores the
fact that the wave functions used in these cases do not satisfy
the Hellmann-Feynman theorem.
The definition of which electron density belongs to which

molecule suffers from the same problems outlined above. If
one uses the Mulliken populations summed over all the atoms
of a particular molecule to define its density, one invites the
same errors in thePC calculations since the densities of each
molecule penetrate the others.
The way the electrostatic interactions are calculated can

magnify or diminish the effects of the first two problems. We
have seen that thePC method is quite adversely affected by
these problems. This is particularly evident for theAF
calculations, where the interaction is underestimated by about
8 kcal/mol. The reason for this becomes apparent when one
considers that certain basis functions (particularly the 1s-outer
functions on the H’s) move quite far (up to about 0.5 Å) from
their respective nuclei in the directions of the H-bonds.
Furthermore, these functions are more diffuse than the 1s-inner
bases, causing even greater penetration.
We considered several other approaches to calculating the

electrostatic interactions that circumvent the problems noted.

One approach is to use the electronic integrals that are calculated
during the HF calculation. This approach does not eliminate
the penetration problem. Nevertheless, it showed some promise
during test calculations. However, due to the necessity to either
store or recalculate large tables of integrals, it is much too
impractical to use extensively for large systems. Multipolar
expansions were also considered. However, interactions be-
tween multipoles at short separations will not relieve the
penetration problems.
We eventually chose theqV method. We calculate the

electric field directly from the molecular wave function. Clearly,
one obtains a much more accurate determination of the electric
field than with point charges, multipoles, etc., which are
extracted from the same wave function. Since all classical
electrostatic approximations essentially estimate the interactions
of the electric fields generated by various molecules with the
charge densities of the others, theqV method provides most
direct approach of those methods considered. Since the
molecules of the aggregate are defined as the nuclei and electron
densities assigned to the atomic basis functions belonging to
these nuclei, the molecular definition becomes unambiguous,
if still arbitrary.12 Since the molecule that interacts with the
field is removed in theqV calculation, one is not faced with
the problems related to the overlap populations between basis
functions on different molecules. This approximation will,
likewise, be free of the penetration problems, as the elecron
density of the molecule interacting with the field is entirely
removed when the field is calculated. The remaining discussion
will refer to qV interactions unless specified otherwise.
The fact that theAF calculations clearly better approximate

the interaction energies provokes several observations:
(1) Use of wave functions that do not satisfy the Hellmann-

Feynman theory to fit electrostatic potentials for dynamics
calculations can lead to large errors. TheNF wave functions
yielded interactions that were 33% higher than the supermo-
lecular interaction and 42% stronger than the two-body interac-
tion energy calculated with the same method. The observation
that the PC calculations are only 6% stronger than the
supermolecular interaction energy is misleading. ThePC
calculations are more properly compared with the sum of the
two-body interactions. In this case they are 12% stronger. We
shall see (below) that the two-body interactions already include
some polarization. Thus they overestimate the electrostatic two-
body interactions, so the error in thePC calculation is even
greater. ThePC calculations match the interaction energy
almost exactly for theVS calculations, but theqV interaction
energies are still substantially in error. At theAF level, the
qV calculation is accurate, but thePC calculation is flawed
due to the substantial increase in the penetration, as discussed
above. These results strongly suggest that thePC model can
appear to give good results due to accidental cancellation of
errors (this point has been made previously).10d TheNF wave
function does not satisfy the Hellmann-Feynman theorem
causing overestimation of the electrostatic interactions. At the
same time, the penetration errors lead to underestimation of the
same interactions. In certain situations, the two errors almost
cancel, leading to the inaccurate conclusion that the electrostatic
interaction are reasonably approximated.
Clearly, the Hellmann-Feynman theorem must be satisfied

for the electrostatic interactions to be accurately approximated
from MO wave functions. However, wave functions which
could not be expected to satisfy this theorem have often been
used to parameterize electrostatic models based upon point
charges or multipole expansions with moderate success.12 We
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TABLE 2: Dipole Moments (debye) for Water Monomers, Dimers, and Pentamer Calculated by the Different Methodsa

X Y Z total X Y Z total differ

NF
monomers

W1 0.00 0.00 2.23 2.23
W2 0.00 0.09 2.22 2.22
W3 0.00 -2.12 -0.65 2.22
W4 -0.01 0.00 2.24 2.24
W5 0.01 0.00 2.24 2.24

dimers from monomers

D12 0.00 0.55 4.69 4.73 0.00 0.09 4.45 4.45 -0.27
D13 0.00 -2.50 1.93 3.16 0.00 -2.12 1.57 2.64 -0.51
D14 -0.44 0.00 4.75 4.77 -0.01 0.00 4.46 4.46 -0.31
D15 0.44 0.00 4.75 4.77 0.01 0.00 4.46 4.46 -0.31
D23 0.00 -2.06 1.53 2.56 0.00 -2.03 1.57 2.57 0.00
D24 -0.04 0.14 4.49 4.49 -0.01 0.09 4.46 4.46 -0.03
D25 0.04 0.14 4.49 4.49 0.01 0.09 4.46 4.46 -0.03
D24 -0.03 -2.14 1.62 2.69 -0.01 -2.12 1.58 2.65 -0.04
D35 0.03 -2.14 1.62 2.69 0.01 -2.12 1.58 2.65 -0.04
D45 0.00 0.00 4.43 4.43 0.00 0.00 4.47 4.47 0.05

pentamer

monomers 0.00 -2.03 8.27 8.51 -1.17
dimers 0.00 -2.00 8.57 8.80 -0.88
supermol. 0.00 -1.91 -9.50 9.68

1C

monomers

W1 0.00 0.00 2.23 2.23
W2 0.00 0.09 2.22 2.22
W3 0.00 -2.12 -0.65 2.22
W4 0.01 0.00 2.24 2.24
W5 -0.01 0.00 2.24 2.24

dimers from monomers

D12 0.00 0.55 4.69 4.73 0.00 0.09 4.45 4.45 -0.27
D13 0.00 -2.50 1.93 3.15 0.00 -2.12 1.57 2.64 -0.51
D14 -0.44 0.00 4.75 4.77 0.01 0.00 4.47 4.47 -0.31
D15 0.44 0.00 4.75 4.77 -0.01 0.00 4.47 4.47 -0.31
D23 0.00 -2.06 1.53 2.56 0.00 -2.03 1.57 2.57 0.00
D24 -0.04 0.14 4.49 4.49 0.01 0.09 4.46 4.46 -0.03
D25 0.04 0.14 4.49 4.49 -0.01 0.09 4.46 4.46 -0.03
D24 -0.04 -2.14 1.62 2.69 0.01 -2.12 1.58 2.65 -0.04
D35 0.04 -2.14 1.62 2.69 -0.01 -2.12 1.58 2.65 -0.04
D45 0.00 0.00 4.43 4.43 0.00 0.00 4.47 4.47 0.05

pentamer

monomers 0.00 -2.03 8.27 8.52 -1.17
dimers 0.00 -2.00 8.57 8.80 -0.88
supermol. 0.00 -1.91 9.50 9.69

VS

monomers

W1 0.00 0.00 2.23 2.23
W2 0.00 0.09 2.21 2.21
W3 0.00 -2.11 -0.65 2.21
W4 -0.02 0.00 2.23 2.23
W5 0.02 0.00 2.23 2.23

dimers from monomers

D12 0.00 0.54 4.68 4.71 0.00 0.09 4.43 4.44 -0.27
D13 0.00 -2.48 1.92 3.14 0.00 -2.11 1.57 2.63 -0.51
D14 -0.45 0.00 4.74 4.76 -0.02 0.00 4.45 4.45 -0.30
D15 0.45 0.00 4.74 4.76 0.02 0.00 4.45 4.45 -0.30
D23 0.00 -2.05 1.52 2.55 0.00 -2.02 1.56 2.55 0.00
D24 -0.05 0.14 4.47 4.47 -0.02 0.09 4.44 4.44 -0.03
D25 0.05 0.14 4.47 4.47 0.02 0.09 4.44 4.44 -0.03
D24 -0.05 -2.13 1.62 2.68 -0.02 -2.11 1.58 2.64 -0.04
D35 0.05 -2.13 1.62 2.68 0.02 -2.11 1.58 2.64 -0.04
D45 0.00 0.00 4.41 4.41 0.00 0.00 4.46 4.46 0.05

pentamer

monomers 0.00 -2.02 8.24 8.49 -1.35
dimers 0.00 -1.99 8.55 8.77 -1.06
supermol. 0.00 -1.90 9.65 9.83
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now see that the results of these models are sometimes usable
due to fortuitous cancellation of errors.
Table 2 presents the dipole moments of the individual water

molecules in the various different MO treatments. TheNF,
1C, andVS calculations all predict larger dipoles than do the
AF calculations. Furthermore, the directions of the dipoles
change when the Gaussians are allowed to float. For example,
waters 4 and 5 have a dipoleX component of 0.01 for theNF
calculation with the pentamer basis set. These values change
to 0.10 for theAF calculation. At the same time, the total dipole
moments for these same waters decrease from 2.24 to 2.00. If
there be no change in electron densities of the monomers upon
aggregation, the dipole moment of the pentamer should be
determinable from vector addition of the dipoles of the
individual waters. Similarly, the dipoles of each of the pairs
that were calculated should be determinable from the vector
addition of the dipoles of its two components. One should also
be able to obtain the dipole moment of the pentamer by taking
one-fourth of the vector sum of the dimer dipole moments.
From Table 2, we see that one cannot accurately obtain the

dipole moment of the pentamer from those of the monomers or
the dimers. Nor can one accurately obtain the dipole moment
of the various dimers from those of the monomers. The dipole
of each pair is larger than the vector sum of its components.
That of the pentamer is larger than the vector sum of both the
monomeric dipoles and one-fourth the vector sum of the dimer
dipoles. If one examines the dipole components along theY
andZ axes (theX component in the pentamer is 0 by symmetry),
one sees that theY component decreases and theZ component
increases as one calculates the pentamer dipole from those of
the monomers or dimers or from the supermolecule directly.
These data provide evidence that the waters are polarized
differently in the monomers, dimers, and pentamer. Thus, the
electrostatic interactions of two monomeric waters might be
expected to underestimate the collective interaction energies of
the dimers, while the electrostatic interaction energies of waters
taken either from the monomers or dimers might be expected
to underestimate the interaction in the pentamer. The discrep-
ancy between the two-body interactions and the supermolecular

interaction energy of the aggregate gives rise to the nonadditive
cooperativity. However, the failure of the monomer dipoles to
accurately predict the dimer dipoles indicate that the two-body
interactions, themselves, are not properly described by simple
electrostatic interactions but are stronger than expected (see
above).2

We have already seen from theqV interactions (Table 1)
that theNF calculations overestimate the electrostatic interac-
tions. Yet, the dipole moments increase upon formation of
dimers and of the pentamer. This can be due to increased
polarization, as noted above. It can also be due to the inadequate
definition of dipole-dipole interactions at short separations. If
there be significant penetration between the entities, the dipole
moment of the dimer (or aggregate) will not be properly
described by the vector sum. Nevertheless, the facts that the
dipoles of the monomeric units are insufficient to describe the
dimers or the pentamer suggest that the electrostactic interactions
are probably still understated.
TheAF dipoles also increase by roughly the same amounts

as do theNF dipoles upon formation of dimers and pentamer.
The AF calculations freeze the electron densities of the
individual waters by immobilizing the floating bases in the
positions they take in the pentamer. Some electronic reorga-
nization is inevitable; however, as after HF convergence, the
density matrix for the water will be different from that in the
pentamer. The nonadditivity of theAF dipoles is not incon-
sistent with the good agreement of theqV and supermolecular
interaction energies. For theqV calculations, the charges are
taken from the Mulliken populations based on thepentamer
density matrix.

Conclusions

Intermolecular interactions for the tetrahedral water pentamer
can be calculated by classical electrostatic interactions from
charge densities based upon molecular wave functions if (1)
the wave functions are obtained from floating basis set calcula-
tions and (2) the wave function is calculated for the aggregate
(not the monomeric units). The Hellmann-Feynman theorem

TABLE 2: (Continued)

X Y Z total X Y Z total differ

AF
monomers

W1 0.00 0.00 2.05 2.05
W2 0.00 0.10 1.96 1.96
W3 0.00 -1.90 -0.58 1.99
W4 -0.10 0.00 1.99 2.00
W5 0.10 0.00 1.99 2.00

dimers from monomers

D12 0.00 0.54 4.25 4.29 0.00 0.10 4.01 4.01 -0.27
D13 0.00 -2.26 1.82 2.90 0.00 -1.90 1.48 2.41 -0.50
D14 -0.51 0.00 4.34 4.37 -0.10 0.00 4.05 4.05 -0.32
D15 0.51 0.00 4.34 4.37 0.10 0.00 4.05 4.05 -0.32
D23 0.00 -1.82 1.34 2.26 0.00 -1.80 1.38 2.27 0.00
D24 -0.13 0.14 3.98 3.98 -0.10 0.10 3.95 3.95 -0.03
D25 0.13 0.14 3.98 3.98 0.10 0.10 3.95 3.95 -0.03
D24 -0.12 -1.92 1.45 2.41 -0.10 -1.90 1.42 2.37 -0.04
D35 0.12 -1.92 1.45 2.41 0.10 -1.90 1.42 2.37 -0.04
D45 0.00 0.00 3.94 3.94 0.00 0.00 3.99 3.99 0.04

pentamer

monomers 0.00 -1.80 7.42 7.63 -1.18
dimers 0.00 -1.77 7.72 7.92 -0.89
supermol. 0.00 -1.68 8.65 8.81

a The dimer dipoles are compared with the vector sums of the monomers. The pentamer dipole is compared with the vector sums of the monomers
and one-fourth the vector sums of the dimers.
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should be satisfied for classical electrostatic interactions to be
accurate. Using floating basis functions satisfies this criterion.
The wave function used must include the effects of polarization
and mutual polarization of the monomers. Using the wave
function for the aggregate satisfies this criterion, as the individual
monomeric components are already appropriately polarized.
Classical electrostatic interactions calculated using the electric

fields calculated without a monomeric component interacting
with the charges on that component, theqV method, are
preferable to interactions between point charges. The reasonable
interactions sometimes calculated using point charges are likely
due to fortuitous cancellations of errors.
The nonadditive cooperativity for the water pentamer is

underestimated by the summation over two-body interactions.
The monomeric units in the two-body calculations are already
significantly polarized. They become more (and differently)
polarized in the pentamer.
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